Heute ist der 23.05.2025
Datum: 23.05.2025 - Source 1 (https://www.oe24.at/welt/sensations-studie-erstmals-aura-eines-lebewesens-von-forschern-fotografiert/634021016):
- Forschungsteam aus Kanada hat ein schwaches Leuchten um lebende Organismen sichtbar gemacht, das erlischt, wenn sie sterben.
- Erkenntnisse könnten helfen, biologische Prozesse besser zu verstehen und zu untersuchen.
- Auch Pflanzen und Pilze zeigen dieses Verhalten.
- Studie veröffentlicht im Fachmagazin Journal of Physical Chemistry Letters.
- Verwendung von EMCCD-Kameras, die extrem schwache Lichtsignale erfassen können.
- Messungen fanden in abgedunkelten Räumen statt, um äußere Störungen zu vermeiden.
- Tests mit Mäusen unter Vollnarkose: schwaches Leuchten nachweisbar, solange die Tiere lebten; erlischt nach dem Tod.
- Ähnliche Tests mit der Pflanze Ackerschmalwand: Leuchten verstärkt sich bei Stress (Alkohol, Wasserstoffperoxid, hohe Temperaturen).
- Pilze zeigten ähnliche Reaktionen wie Pflanzen.
- Licht entsteht vermutlich durch molekulare Reaktionen in Zellen, bei denen Stoffe zerfallen und kleine Lichtblitze (Biophotonen) entstehen.
- Biophotonen treten besonders bei Stress oder Schmerzen auf.
- Erste fotografische Darstellung der Lichtverteilung auf der Oberfläche lebender Organismen.
- Mögliche zukünftige Anwendungen: Beobachtung der Vitalität von Lebewesen in Landwirtschaft und biologischer Forschung.
Source 2 (https://andor.oxinst.com/learning/view/article/4-5d-microscopy):
- Rapid, multi-dimensional imaging of living cells or model organisms is increasingly necessary in biological research.
- Fundamental biological phenomena involve microscopic structures moving rapidly in 3D space.
- Effective real-time capture of these processes requires 4D imaging (3D spatial dimensions + time).
- To track multiple intracellular structures, 5D imaging (multiple spectrally separated fluorophores) is often needed.
- Key goals in imaging include minimizing phototoxic damage to cells/tissues and photobleaching of fluorophores.
- Techniques for 5D cell imaging include:
- Spinning disk confocal microscopy
- Deconvolution widefield microscopy
- Structured illumination
- Electron Multiplying CCD (EMCCD) technology, such as the iXon EMCCD Camera, enhances these imaging techniques.
- EMCCD technology offers a high signal-to-noise ratio compared to conventional detectors.
- Rapid-readout capabilities of EMCCD allow for quick acquisition of z-stacks and time-lapse sequences.
- Spectral dimension can be accessed through fast switching between fluorophores or simultaneous emission signal splitting.
- Minimizing excitation powers reduces dye photobleaching and cell phototoxicity.
- iXon3 EMCCD Camera and Luca EMCCD platforms provide single photon sensitivity and high Quantum Efficiency at multi-MHz readout speeds.
Source 3 (https://www.nature.com/articles/s41377-021-00561-2):
- Baker, M. J., Hughes, C. S. & Hollywood, K. A. (2016). Biophotonics: Vibrational Spectroscopic Diagnostics. San Rafael: Morgan & Claypool Publishers.
- Xin, H. B., Namgung, B. & Lee, L. P. (2018). Nanoplasmonic optical antennas for life sciences and medicine. Nat. Rev. Mater. 3, 228–243.
- Fan, X. D. et al. (2008). Sensitive optical biosensors for unlabeled targets: a review. Analytica Chim. Acta 620, 8–26.
- Bai, W. B. et al. (2018). Flexible transient optical waveguides and surface-wave biosensors constructed from monocrystalline silicon. Adv. Mater. 30, 1801584.
- Andreu, N., Zelmer, A. & Wiles, S. (2011). Noninvasive biophotonic imaging for studies of infectious disease. FEMS Microbiol. Rev. 35, 360–394.
- Wu, L. L. et al. (2019). Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species. Acc. Chem. Res. 52, 2582–2597.
- Liao, J. & Yang, L. (2021). Optical whispering-gallery mode barcodes for high-precision and wide-range temperature measurements. Light.: Sci. Appl. 10, 32.
- Yang, S. T. et al. (2009). Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 131, 11308–11309.
- Zhu, H. Y. et al. (2013). Optical imaging techniques for point-of-care diagnostics. Lab Chip 13, 51–67.
- Zhang, K. Y. et al. (2018). Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev. 118, 1770–1839.
- Stender, A. S. et al. (2013). Single cell optical imaging and spectroscopy. Chem. Rev. 113, 2469–2527.
- Lu, H. T. et al. (2019). Graphene quantum dots for optical bioimaging. Small 15, 1902136.
- Doong, R. A., Lee, P. S. & Anitha, K. (2010). Simultaneous determination of biomarkers for Alzheimer’s disease using sol–gel-derived optical array biosensor. Biosens. Bioelectron. 25, 2464–2469.
- Law, W. C. et al. (2011). Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement. ACS Nano 5, 4858–4864.
- Budz, H. A. et al. (2010). Photoluminescence model for a hybrid aptamer-GaAs optical biosensor. J. Appl. Phys. 107, 104702.
- Yao, J., Yang, M. & Duan, Y. X. (2014). Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev. 114, 6130–6178.
- Cennamo, N. et al. (2013). An innovative plastic optical fiber-based biosensor for new bio/applications. The case of celiac disease. Sens. Actuators B: Chem. 176, 1008–1014.
- Feng, K. J. et al. (2011). Label-free optical bifunctional oligonucleotide probe for homogeneous amplification detection of disease markers. Biosens. Bioelectron. 29, 66–75.
- Xiong, R. et al. (2020). Biopolymeric photonic structures: design, fabrication, and emerging applications. Chem. Soc. Rev. 49, 983–1031.
- Ballato, J. et al. (2017). Glass and process development for the next generation of optical fibers: a review. Fibers 5, 11.
- Qiu, J. R., Miura, K. & Hirao, K. (2008). Femtosecond laser-induced microfeatures in glasses and their applications. J. Non-Crystalline Solids 354, 1100–1111.
- Bradley, D. A. et al. (2012). Review of doped silica glass optical fibre: their TL properties and potential applications in radiation therapy dosimetry. Appl. Radiat. Isotopes 71, 2–11.
- Zhang, X. Y. et al. (2019). Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photonics 13, 21–24.
- Xing, X. B. et al. (2008). Ultracompact photonic coupling splitters twisted by PTT nanowires. Nano Lett. 8, 2839–2843.
- Tang, S. J. et al. (2018). A tunable optofluidic microlaser in a photostable conjugated polymer. Adv. Mater. 30, 1804556.
- Tong, L. M. et al. (2003). Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819.
- Brambilla, G. (2010). Optical fibre nanowires and microwires: a review. J. Opt. 12, 043001.
- Shan, D. Y. et al. (2017). Flexible biodegradable citrate-based polymeric step-index optical fiber. Biomaterials 143, 142–148.
- Williams, D. F. (2008). On the mechanisms of biocompatibility. Biomaterials 29, 2941–2953.
- Tadepalli, S. et al. (2017). Bio-optics and bio-inspired optical materials. Chem. Rev. 117, 12705–12763.
- Humar, M. et al. (2017). Toward biomaterial-based implantable photonic devices. Nanophotonics 6, 414–434.
- Chen, Y. C. & Fan, X. D. (2019). Biological lasers for biomedical applications. Adv. Optical Mater. 7, 1900377.
- Apter, B. et al. (2019). Light waveguiding in bioinspired peptide nanostructures. J. Pept. Sci. 25, e3164.
- Zhang, Y. F. et al. (2020). DNA self-switchable microlaser. ACS Nano 14, 16122–16130.
- Mysliwiec, J. et al. (2017). Biomaterials in light amplification. J. Opt. 19, 033003.
- Xin, H. B. et al. (2020). Optical forces: from fundamental to biological applications. Adv. Mater. 32, 2001994.
- Puchkova, A. et al. (2015). DNA origami nanoantennas with over 5000-fold fluorescence enhancement and single-molecule detection at 25 μM. Nano Lett. 15, 8354–8359.
- Xin, H. B. et al. (2013). Escherichia coli-based biophotonic waveguides. Nano Lett. 13, 3408–3413.
- Li, Y. C. et al. (2018). Living nanospear for near-field optical probing. ACS Nano 12, 10703–10711.
- Lee, G. H. et al. (2020). Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 5, 149–165.
- Kolle, M. & Lee, S. (2018). Progress and opportunities in soft photonics and biologically inspired optics. Adv. Mater. 30, 1702669.
- Yun, S. H. & Kwok, S. J. J. (2017). Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 1, 0008.
- Maiman, T. H. (1960). Stimulated optical radiation in ruby. Nature 187, 493–494.
- Fan, X. D. & Yun, S. H. (2014). The potential of optofluidic biolasers. Nat. Methods 11, 141–147.
- Hales, J. E. et al. (2019). Virus lasers for biological detection. Nat. Commun. 10, 3594.
- Cho, S. et al. (2016). Laser particle stimulated emission microscopy. Phys. Rev. Lett. 117, 193902.
- Chen, Q. S. et al. (2013). Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control. Lab a Chip 13, 3351–3354.
- Schubert, M. et al. (2017). Lasing in live mitotic and non-phagocytic cells by efficient delivery of microresonators. Sci. Rep. 7, 40877.
- Chen, Q. S. et al. (2017). An integrated microwell array platform for cell lasing analysis. Lab a Chip 17, 2814–2820.
- Chen, Y. C., Chen, Q. S. & Fan, X. D. (2016). Lasing in blood. Optica 3, 809–815.
- Gongora, J. S. T. & Fratalocchi, A. (2016). Optical force on diseased blood cells: towards the optical sorting of biological matter. Opt. Lasers Eng. 76, 40–44.
- Song, Q. H. et al. (2010). Random lasing in bone tissue. Opt. Lett. 35, 1425–1427.
- Wu, X. Q. et al. (2019). High-Q, low-mode-volume microsphere-integrated Fabry-Perot cavity for optofluidic lasing applications. Photonics. Research 7, 50–60.
- Siegman, A. E. (1986). Lasers. University Science Books.
- Toropov, N. et al. (2021). Review of biosensing with whispering-gallery mode lasers. Light.: Sci. Appl. 10, 42.
- Chen, Y. C. et al. (2017). Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis. Nat. Biomed. Eng. 1, 724–735.
- Chudakov, D. M. et al. (2010). Fluorescent proteins and their applications in imaging living cells and tissues. Physiological Rev. 90, 1103–1163.
- Kuehne, A. J. C. & Gather, M. C. (2016). Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chem. Rev. 116, 12823–12864.
- Gather, M. C. & Yun, S. H. (2014). Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers. Nat. Commun. 5, 5722.
- Oh, H. J. et al. (2014). Lasing from fluorescent protein crystals. Opt. Express 22, 31411–31416.
- Jonáš, A. et al. (2014). In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities. Lab a Chip 14, 3093–3100.
- Wu, X. et al. (2013). Bio-inspired optofluidic lasers with luciferin. Appl. Phys. Lett. 102, 203706.
- Nizamoglu, S., Gather, M. C. & Yun, S. H. (2013). All-biomaterial laser using vitamin and biopolymers. Adv. Mater. 25, 5943–5947.
- Humar, M., Gather, M. C. & Yun, S. H. (2015). Cellular dye lasers: lasing thresholds and sensing in a planar resonator. Opt. Express 23, 27865–27879.
- Gather, M. C. & Yun, S. H. (2011). Single-cell biological lasers. Nat. Photonics 5, 406–410.
- Gather, M. C. & Yun, S. H. (2011). Lasing from Escherichia coli bacteria genetically programmed to express green fluorescent protein. Opt. Lett. 36, 3299–3301.
- Karl, M. et al. (2017). Single cell induced optical confinement in biological lasers. J. Phys. D: Appl. Phys. 50, 084005.
- Nizamoglu, S. et al. (2015). A simple approach to biological single-cell lasers via intracellular dyes. Adv. Optical Mater. 3, 1197–1200.
- Chen, Y. C. et al. (2017). Versatile tissue lasers based on high-Q Fabry-Pérot microcavities. Lab Chip 17, 538–548.
- Septiadi, D. et al. (2020). Biolasing from Individual cells in a low‐Q resonator enables spectral fingerprinting. Adv. Optical Mater. 8, 1901573.
- Fikouras, A. H. et al. (2018). Non-obstructive intracellular nanolasers. Nat. Commun. 9, 4817.
- Sun, Y. Z. & Fan, X. D. (2012). Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers. Angew. Chem. Int. Ed. 51, 1236–1239.
- Schubert, M. et al. (2015). Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking. Nano Lett. 15, 5647–5652.
- Matsko, A. B. & Ilchenko, V. S. (2006). Optical resonators with whispering-gallery modes-part I: basics. IEEE J. Sel. Top. Quantum Electron. 12, 3–14.
- Jiang, X. F. et al. (2020). Whispering-gallery sensors. Matter 3, 371–392.
- Zhi, Y. Y. et al. (2017). Single nanoparticle detection using optical microcavities. Adv. Mater. 29, 1604920.
- He, L. N., Özdemir, Ş. K. & Yang, L. (2013). Whispering gallery microcavity lasers. Laser Photonics Rev. 7, 60–82.
- Ta, V. D., Chen, R. & Sun, H. D. (2013). Tuning whispering gallery mode lasing from self-assembled polymer droplets. Sci. Rep. 3, 1362.
- Gu, F. X. et al. (2017). Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering. Light.: Sci. Appl. 6, e17061.
- Humar, M. & Yun, S. H. (2015). Intracellular microlasers. Nat. Photonics 9, 572–576.
- Wu, X. Q. et al. (2018). Nanowire lasers as intracellular probes. Nanoscale 10, 9729–9735.
- Galanzha, E. I. et al. (2017). Spaser as a biological probe. Nat. Commun. 8, 15528.
- Ma, Y. J., Nolte, R. J. M. & Cornelissen, J. J. L. M. (2012). Virus-based nanocarriers for drug delivery. Adv. Drug Deliv. Rev. 64, 811–825.
- Labrie, S. J., Samson, J. E. & Moineau, S. (2010). Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327.
- Kutter, E. et al. (2010). Phage therapy in clinical practice: treatment of human infections. Curr. Pharm. Biotechnol. 11, 69–86.
- Morales, N. M. & McClean, M. N. (2017). Engineered bacteria self-organize to sense pressure. Nat. Biotechnol. 35, 1045–1047.
- Peivandi, A. et al. (2019). Hierarchically structured, self-healing, fluorescent, bioactive hydrogels with self-organizing bundles of phage nanofilaments. Chem. Mater. 31, 5442–5449.
- Lee, J. H. et al. (2017). Production of tunable nanomaterials using hierarchically assembled bacteriophages. Nat. Protoc. 12, 1999–2013.
- Arter, J. A. et al. (2010). Virus-PEDOT nanowires for biosensing. Nano Lett. 10, 4858–4862.
- Li, L. et al. (2020). Simultaneous detection of three zoonotic pathogens based on phage display peptide and multicolor quantum dots. Anal. Biochem. 608, 113854.
- Ignesti, E. et al. (2016). A new class of optical sensors: a random laser based device. Sci. Rep. 6, 35225.
- Polson, R. C. & Vardeny, Z. V. (2004). Random lasing in human tissues. Appl. Phys. Lett. 85, 1289–1291.
- Briones-Herrera, J. C. et al. (2013). Evaluation of mechanical behavior of soft tissue by means of random laser emission. Rev. Sci. Instrum. 84, 104301.
- Wang, L. H. et al. (1996). Biological laser action. Appl. Opt. 35, 1775–1779.
- Lahoz, F. et al. (2019). Random lasing in brain tissues. Org. Electron. 75, 105389.
- Lahoz, F. et al. (2015). Random laser in biological tissues impregnated with a fluorescent anticancer drug. Laser Phys. Lett. 12, 045805.
- Wang, Y. et al. (2017). Random lasing in human tissues embedded with organic dyes for cancer diagnosis. Sci. Rep. 7, 8385.
- Zhang, D. K. et al. (2019). Random laser marked PLCD1 gene therapy effect on human breast cancer. J. Appl. Phys. 125, 203102.
- Hohmann, M. et al. (2019). Investigation of random lasing as a feedback mechanism for tissue differentiation during laser surgery. Biomed. Optical Express 10, 807.
- Humar, M. et al. (2017). Biomaterial microlasers implantable in the cornea, skin, and blood. Optica 4, 1080–1085.
- Martino, N. et al. (2019). Wavelength-encoded laser particles for massively multiplexed cell tagging. Nat. Photonics 13, 720–727.
- Jiang, X. F. et al. (2016). Whispering-gallery microcavities with unidirectional laser emission. Laser Photonics Rev. 10, 40–61.
- Tang, S. J. et al. (2021). Laser particles with omnidirectional emission for cell tracking. Light.: Sci. Appl. 10, 23.
- Li, X. Z. et al. (2020). Optical coherence tomography and fluorescence microscopy dual-modality imaging for in vivo single-cell tracking with nanowire lasers. Biomed. Opt. Express 11, 3659–3672.
- Chen, Y. C. et al. (2018). A robust tissue laser platform for analysis of formalin-fixed paraffin-embedded biopsies. Lab a Chip 18, 1057–1065.
- Chen, Y. C. et al. (2019). Chromatin laser imaging reveals abnormal nuclear changes for early cancer detection. Biomed. Opt. Express 10, 838–854.
- Tan, X. T. et al. (2020). Fast and reproducible ELISA laser platform for ultrasensitive protein quantification. ACS Sens. 5, 110–117.
- Chen, Y. C. et al. (2020). Monitoring neuron activities and interactions with laser emissions. ACS Photonics 7, 2182–2189.
- Schubert, M. et al. (2020). Monitoring contractility in cardiac tissue with cellular resolution using biointegrated microlasers. Nat. Photonics 14, 452–458.
- Wang, C. et al. (2011). Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32, 6145–6154.
- Dianov, E. M. (2012). Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers. Light.: Sci. Appl. 1, e12.
- Haddock, S. H. et al. (2010). Bioluminescence in the sea. Annu. Review Mar. Sci. 2, 443–493.
- Oertner, T. G. (2006). Bright Side-. life 440, 280.
- Lee, H. J. et al. (2016). Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Sci. Signal. 9, ra106.
- Sundar, V. C. et al. (2003). Fibre-optical features of a glass sponge. Nature 424, 899–900.
- Franze, K. et al. (2007). Muller cells are living optical fibers in the vertebrate retina. Proc. Natl Acad. Sci. USA 104, 8287–8292.
- Agte, S. et al. (2011). Muller glial cell-provided cellular light guidance through the vital guinea-pig retina. Biophysical J. 101, 2611–2619.
- Pena-Francesch, A. et al. (2014). Materials fabrication from native and recombinant thermoplastic squid proteins. Adv. Funct. Mater. 24, 7401–7409.
- Shan, D. Y. et al. (2018). Polymeric biomaterials for biophotonic applications. Bioact. Mater. 3, 434–445.
- Jeevarathinam, A. S. et al. (2019). A cellulose-based photoacoustic sensor to measure heparin concentration and activity in human blood samples. Biosens. Bioelectron. 126, 831–837.
- Nazempour, R. et al. (2018). Biocompatible and implantable optical fibers and waveguides for biomedicine. Materials 11, 1283.
- Monks, J. N. et al. (2016). Spider silk: mother nature’s bio-superlens. Nano Lett. 16, 5842–5845.
- Parker, S. T. et al. (2009). Biocompatible silk printed optical waveguides. Adv. Mater. 21, 2411–2415.
- Li, D. D. & Wang, L. L. (2010). Cellulose acetate polymer film modified microstructured polymer optical fiber towards a nitrite optical probe. Opt. Commun. 283, 2841–2844.